Hormone autotrophic growth and differentiation identifies mutant lines of Arabidopsis with altered cytokinin and auxin content or signaling.
نویسندگان
چکیده
We describe mutant tissue lines of Arabidopsis that are able to grow in vitro as callus on hormone-free medium. The 14 lines presented here show different hormone autotrophic differentiation behaviors that can be classified into three categories: (a) forming roots (rooty callus), (b) forming shoots or shoot-like structures (shooty callus), or (c) growing without organ formation (callus). Three fast-growing lines showed altered steady-state mRNA levels of the Cdc2 and CycD3 cell cycle genes. Three of the six rooty callus lines contained about 20- to 30-fold higher levels of auxins than wild-type callus. These and two other lines with normal auxin content showed an increased steady-state level of IAA1 and IAA2 transcripts in the absence of exogenous auxin. Five of the six shooty callus lines had increased steady-state mRNA levels of the CKI1 gene and/or of the homeobox genes KNAT1 and STM, suggesting that the phenotype is linked to altered cytokinin signaling. Also, one cytokinin-overproducing line with only 5% of wild-type cytokinin oxidase activity was identified. These results indicate that screening for hormone-autonomous growth identifies mutants with altered hormone content or signaling.
منابع مشابه
Isolation and functional characterization of PgTIP1, a hormone-autotrophic cells-specific tonoplast aquaporin in ginseng.
The suppression subtractive hybridization technique was used to identify differentially expressed genes between hormone-autotrophic and hormone-dependent Panax ginseng callus lines. A tonoplast intrinsic protein cDNA (PgTIP1) was found to be highly and specifically expressed in hormone-autotrophic ginseng cells, which was slightly up-regulated by cytokinin while significantly down-regulated whe...
متن کاملSirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components
In Arabidopsis thaliana, besides several key transcription factors and chromatin modifiers, phytohormones auxin and cytokinin play pivotal role in shoot and root meristem maintenance, and lateral root (LR) development. Sirtinol, a chemical inhibitor of Sir2 proteins, is known to promote some auxin induced phenotypes in Arabidopsis. However, its effect on plant stem cell maintenance or organ for...
متن کاملRegulation of root greening by light and auxin/cytokinin signaling in Arabidopsis.
Tight coordination between plastid differentiation and plant development is best evidenced by the synchronized development of photosynthetic tissues and the biogenesis of chloroplasts. Here, we show that Arabidopsis thaliana roots demonstrate accelerated chlorophyll accumulation and chloroplast development when they are detached from shoots. However, this phenomenon is repressed by auxin treatm...
متن کاملAUXIN UP-REGULATED F-BOX PROTEIN1 regulates the cross talk between auxin transport and cytokinin signaling during plant root growth.
Plant root development is mediated by the concerted action of the auxin and cytokinin phytohormones, with cytokinin serving as an antagonist of auxin transport. Here, we identify the AUXIN UP-REGULATED F-BOX PROTEIN1 (AUF1) and its potential paralog AUF2 as important positive modifiers of root elongation that tether auxin movements to cytokinin signaling in Arabidopsis (Arabidopsis thaliana). T...
متن کاملThe transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis.
Hormones, such as auxin and cytokinin, are involved in the complex molecular network that regulates the coordinated development of plant organs. Genes controlling ovule patterning have been identified and studied in detail; however, the roles of auxin and cytokinin in ovule development are largely unknown. Here we show that key cytokinin pathway genes, such as isopentenyltransferase and cytokin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 122 3 شماره
صفحات -
تاریخ انتشار 2000